
From	
 Ingest	
 To	
 Access:	
 A	
 Day	
 In	
 The	
 Life	
 Of	
 A	
 HathiTrust	
 Object	

Notes:	

	

1. Bibliographic data must be loaded into Aleph before content is ingested.
This data has a number of requirements:

a. Records as complete as possible
b. One bibliographic record per item (multi-volume works should have

the same record repeated for each item). Each record should
contain a single 955 field

c. Local system number in 001
d. OCLC number in an 035 field with appropriate identifying prefix

(OcoLC, ocm, ocn, etc.)
e. Barcode in 955 | b; any alphabetic characters should be lowercase.
f. Item description (enumeration / chronology) in 955 | v

As bib data is ingested, a process identifies records that already exist in
the repository based on OCLC number. If a bib record already exists, new
holdings and item records (for the ingested items) are added to the
existing record.

2. Bibliographic Content Store (Aleph)

a. After bibliographic ingest has taken place, when content matching a
bibliographic records also enters the repository, a process is
triggered that adds the volume id and a timestamp to a field in the
bibliographic record and starts an automated rights determination
process based on bibliographic metadata (publisher date,
publisher, etc.).

3. Rights Determination
a. When the rights determination process is complete, a list of the

volume ids and other rights information is inserted into the rights
database.

4. MySQL Database Server
a. This is where the rights, shadow rights, and Geo IP databases are

located.

5. Rights Database
a. For a full description of the database, see

http://www.hathitrust.org/rights_database
b. The results of automated and manual copyright review process are

stored here.

c. There are multiple entries in the Rights Database for a single item if
the rights information of that item changes (i.e was determined
automatically to be in copyright, but on review is determined to be
in the public domain).

6. Shadow Rights Database
a. This database contains rights information and the most recent time

the information was created or changed for every volume in the
repository. A timestamp is maintained that allows a query for the ids
whose rights have changed since or which entered the repository
for the first time since the last time indexing occurred. It is used to
generate the list of items at any given time that can be placed in a
separate queue to be indexed for large-scale search.

7. Geo IP database
a. Viewing privileges for volumes that are public domain in the US are

different if users are viewing them from inside or outside of the
United States. This database contains mapping information that the
PageTurner uses to determine user access.

8. Processes check for updated information in bib records and in the rights
database daily to be sure all rights information is current.

9. Bibliographic Search Solr Index
a. The temporary HathiTrust catalog is built on the VuFind platform,

which uses Solr search. The Solr search index is rebuilt daily from
the primary bibliographic data store to capture changes that have
been made.

10. Queries are made to this index whenever a user query is entered.

11. Catalog User Interface
a. The temporary catalog provides bibliographic search and faceted

browsing for all volumes in HathiTrust.

12. Content Ingest
a. Although this appears as number 12 on the list, the ingest of

content is the trigger for all processes following bibliographic ingest.
The bibliographic data is loaded and rights determination, indexing,
availability, etc.. follow after the corresponding volumes have been
ingested.

b. The only master formats currently in the repository are ITU G4 TIFF
and JPEG2000.

13. HathiTrust has an array of servers devoted to high volume backend
processing. These servers currently handle content ingest (with a capacity
to ingest up to 500,000 volumes a month) and validation, and large scale
search indexing.

14. GROOVE (Google Return Object-Oriented Validation Environment) is a
custom-built ingest mechanism that handles inbound validation, METS file
creation, the creation of a quality review sample, handle assignment, and
Zip file creation for every volume that enters HathiTrust. The following
validation is done:

a. Luhn validation on barcodes
b. Fixity check on JPEG2000, TIFF, UTF-8 using MD5
c. Well-formedness and embedded metadata check on JPEG2000,

TIFF, UTF-8 using JHOVE
And the METS file that is created is composed of

a. metsHdr with an ID, creator of METS document, and creation date
b. dmdSec with marcxml
c. dmdSec with a reference to ILS record
d. amdSec containing one techMD with PREMIS metadata
e. fileSec with four fileGrps (zip archive, images, OCR, and coordinate

OCR)
f. Physical structMap connecting files with metadata (pg. numbers or

features)

15. Quality review on deposited content is the responsibility of the depositing
institution (see http://www.hathitrust.org/quality for more information about
quality). The University of Michigan has been doing longitudinal analysis of
quality on Google-scanned volumes since 2007 as part of its partnership
with Google. Results of this analysis are fed back to Google, resulting in
quality improvements across volumes digitized from all Google-partner
libraries. Michiganʼs process is represented here. When volumes are
ingested, a sample of 20 consecutive pages, randomly selected within
each volume, is set aside for quality review. Manual QR is performed on
approximately 1% of these samples, reviewing for problems such as blur,
cleaning, warp, crop, obscuring of text or images, and colorization issues,
as well as errors relating to thresholding (thick or broken).

16. Content Data Store
a. After passing all of the steps involved in GROOVE, the following

elements enter the repository:
i. A Zip file containing

1. Page image files
2. OCR files
3. Coordinate OCR files

4. A Google METS document
ii. A HathiTrust METS file

b. This content is stored in a pairtree directory structure
(http://www.cdlib.org/inside/diglib/pairtree/pairtreespec.html) on
Isilon storage.

c. Features of the storage include:
i. Built for disaster recovery. High redundancy.
ii. Divided into nodes (CPUs + storage)
iii. Data is distributed across all nodes
iv. N+3 parity protection = 3 nodes can completely fail and all

data will still be available
v. Sync IQ replication software
vi. MediaScan scans blocks in the system for bad disk sectors.

If it finds one, it uses parity information to rebuild the
necessary data and rewrite a block somewhere else on the
drive. Content is migrated to a block in a new node and re-
balanced across the system, incorporating the new node.

vii. OneFS 6.0 operating system release will allow checks of
system data and metadata via associated checksums.

17. SLIP (Solr Large-scale Indexing Processer)
a. SLIP creates documents for indexing. The full process is that SLIP

i. Receives a list of ids to be indexed from the Shadow Rights
Database.

ii. Queries the repository, opens the zip file, unzips the OCR
iii. Queries VuFind Solr index for Solr metadata fields
iv. Queries Rights Database for rights information

b. After building a document, SLIP sends it to one of the Large scale
search Solr servers in round robin fashion for indexing. There are N
number of processes for creating documents in each SLIP instance
on the ingest servers.

18. Large-scale Search Servers
a. There are four Solr instances on each large-scale search server

that handle two index shards. Two Building Solr instances build one
shard each. Once a day, snapshots of the shards are mounted and
served by the Serving Solr Instances. The Serving Solr instances
receive queries from the LSS application (22) and send them to the
shards on all of the other machines. The Serving Solr instances
merge query results from the shards and send the results back to
the application.

19. Web Servers

a. Software for the PageTurner, Collection Builder, and Large-scale
Search applications is located on web servers at each repository
location (University of Michigan and Indiana University).

20. Large-scale Search Application
a. This application resides on the web servers at each repository

location (UM and IU). It sends user queries to the Solr Serving
instances and receives and displays results.

21. Collection Builder

a. The Collection Builder application also resides on the repository
web servers. It allows users to save items from the repository to
public or private collections, and to perform full-text search inside of
those collections.

b. It works by saving limited metadata for items that have been saved
to a collection (title, publisher, date) to a database table with the
collection to which it belongs.

c. When new items are added, the volume OCR for those volumes is
retrieved from the repository and indexed (or reindexed) along with
other volumes from that collection.

22. Collection Builder Solr Index
a. The index of all volumes that have been saved to a collection in

Collection Builder.

23. PageTurner
a. When a volume in HathiTrust is accessed for viewing, the

PageTurner
i. Retrieves bibliographic information for that volume from the

bibliographic data store
ii. Retrieves source and attribute information from the rights

database to determine access capabilities (search-only or
full-text)

iii. Retrieves the corresponding objectʼs METS file, and the
page image or OCR text that is requested by the user. Page
images and OCR are extracted from the repository Zip file
and page images are transformed on the fly into access-
quality images.

24. Accessible Interface
a. HathiTrust has configured an accessible interface to its content.

Please see the diagram for more information.

25. Computational Research

a. HathiTrust has defined three different methods for allowing
computational research on repository content

i. Data distribution (for public domain volumes – samples are
currently available on the HathiTrust website at
http://www.hathitrust.org/datasets

ii. A protocol-based method (e.g. SEASR) that will allow
researchers to run routines on public domain content inside
the repository and receive results.

iii. A research center that will provide researchers the capability
to do intensive processing across the entire body of
repository materials.

