
This document is a work in progress and will be updated as successive stages of 
testing are completed. The current report covers Stages 1 and 2 of 5. 

HathiTrust Solr Benchmarking 

Introduction 

The ability to discover content in the HathiTrust repository benefits the archive in 

a variety of ways. The greater the ability of users to find and use content in the 

repository, the greater their appreciation of what might otherwise be seen as a 

preservation effort of hypothetical value. In addition, the process of revealing 

content in the repository also adds a method for ensuring the integrity of the files; 

use of those files can reveal problems that might go undetected in a dark archive. 

While we can facilitate basic discovery through bibliographic searches, deeper 

discovery through full-text searches across the entire repository provides even 

greater benefits. 

Research into searching a body of content this large is still in its infancy (the 

repository is approaching one billion pages), and few clear strategies for 

accomplishing such tasks exist. The major large-scale open source search 

engine, Lucene, does not provide benchmarking information for data sets this 

large, and Solr, the most widely deployed implementation of Lucene, has only 

recently begun gathering benchmarking data. We embark on trying to solve this 

problem with only general guidance on strategies. 

Research programmers in the University of Michigan’s Digital Library Production 

Service have undertaken a process to generate benchmarking data to help 

shape our strategies. After a preliminary investigation of options, they chose to 

use Solr and they engaged the Solr development community in helping to define 

paths. One feature of Solr is its ability to scale searches across very large bodies 

of content through its use of distributed searching and “shards.” When an index 

becomes too large to fit on a single system, or when a single query takes too 

long to execute, an index can be split into multiple shards, and Solr can query 

and merge results across those shards. Although the size of our data clearly 

points to the need for shards, there are many other variables in designing a 

successful approach, one that scales to large amounts of data and provides 

meaningful results.  

This report summarizes the strategy we are taking and presents the results of 

that strategy thus far. 
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Overview of Strategy 

We have attempted to define the variables that have the greatest impact on 

large-scale searching. We have also tried to stage our benchmarking process so 

that we start with the simplest approach and introduce each new variable only 

after collecting benchmarking data on the previous instantiation of the index and 

environment. Our stages are as follows: 

Stage 1 – Growing the index: As the index gets larger, we expect to learn 

about the size of the index relative to the body of content, time to index with a 

growing body of content, and degradation of search performance as the 

amount of content increases. In order to gain a clear sense of the way that 

these phenomena take place, we are conducting tests on indexes in 100,000 

volume steps, from 100,000 to 1,000,000 (with additional increments at 

10,000 and 50,000). 

Stage 2 – Impact of memory: increasing physical memory and changing JVM 

configurations will also influence performance. We will increase physical 

memory from 4GB to 8GB and test several JVM configuration changes in 

combination with a refined test suite of queries on each of these index sizes. 

Stage 3 – Using shards: We will introduce shards in the approach, employing 

multiple shards with the 8GB memory and optimal JVM configuration. We will 

test the suite of searches with one shard on each of two physical servers. We 

will then test the suite of searches with one shard on each of two virtual 

servers on each physical server (i.e., four shards). Benchmarking data will be 

gathered for all of the index steps. 

Stage 4 – Load testing: We will introduce load testing for the single shard and 

multi-shard approaches, attempting to see what impact a large number of 

users will have on performance. 

Stage 5 – Faceting results: Full-text searching of a large number of 

documents will undoubtedly lead to the retrieval of a large numbers of results, 

and thus usability problems. One obvious strategy for improving navigation of 

large numbers of results is the use of faceted displays from associated 

bibliographic data. We will add relatively full bibliographic records to each of 

the documents and repeat the testing process with a faceted display of results 

from the bibliographic data. 
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Stage 1: Growing the Index 

Stage 1 investigates the time to index with a growing body of content, and the 

degradation of search performance as the amount of content increases. In order 

to gain a clear sense of the way that these phenomena take place, we conducted 

tests on indexes in 100,000 volume steps, from 100,000 to 1,000,000 (with 

additional increments at 10,000 and 50,000). 

 

1. Ratio of size of documents to size of index 

We found a linear relationship between the sizes of the text base and the index. 

The collection of documents was typically 2.7 times the size of the resulting index 

at each increment. The largest body of text, 666.845 GB (one million volumes) 

resulted in an index of 235.17 GB, or a text to index ratio of roughly 2.8:1 (the 

index was about 35% the size of the text). A sample of results (up to 606,200 

volumes) is shown below. 
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Figure 1. Sizes of the text base and indexes for different numbers of volumes 
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2. Time to index 

The amount of real and machine time needed for indexing varies significantly, 

depending on a number of factors. With our current environment, the one million-

document index took a total of 117 hours in real time to produce. An excerpt of 

results (up to 402,000 volumes) is given in Figure 2.  
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Figure 2. Time to Index vs. Number of Volumes 

 

3. Performance of queries 

Results returned using a larger and more representative test suite are reported 

on in Stage 2 below, but in this stage we were able to make some preliminary 

observations about performance of a single index in a single Solr instance. Using 

a small (100 query) sample from the University of Michigan online catalog search 

logs, we found that across all of the bodies of text indexed, 90% of the queries 

took fewer than two seconds. For the one million-document index, the most 

challenging queries exceeded current timeouts or caused memory faults in the 

current memory/JVM configuration. 
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Stage 2: Impact of Memory on Search Performance 

The objectives of Stage 2 are to: 

 

1. Refine the query suite used in Stage 1 

2. Test query response times with increased physical memory (from 4GB to 

8GB) 

3. Investigate the impact of caching and memory allocation on performance 

and scalability 

 

1. Refine the query suite  

 

Our goal is to measure the effect of the number of volumes indexed and the size 

of the resulting index on query response times. Response times, however, can 

vary greatly depending on the nature of the query. Some of the factors that affect 

response times are: 

 

• How common the word(s) are in the collection 

• How many words are in the query 

• Whether the query is a Boolean query or a Phrase query 

 

The queries that take the shortest amount of time are single word queries for 

words occurring infrequently. The queries that take the longest time are phrase 

queries which contain several frequently occurring words. As an example, for our 

1,000,000 volume index, the phrase query "the New Economics" took over 2 

minutes to run while the one word query "golf" took about a 10th of a second. The 

slowest query "the lives and literature of the beat generation" took nearly 10 

minutes (a full distribution of query response times for 1,000 queries run on our 

1,000,000 volume index is shown in Figure 3. See the Note on Processing 

Boolean and Phrase Queries in the Appendix for a more detailed discussion of 

the relationship between the type of query and query response time). In order to 

receive results that were close as possible to “real” results that we would see in a 

production environment, it was important to test with a set of realistic and 

representative queries. 
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Figure 3. Distribution of query response times for 1,000,000 volume index. Note 

that response time is shown on a logarithmic scale; the slowest queries took 

more than 100,000 times longer than the fastest queries. 

 

The tests reported in Stage 1 used 100 queries from Mirlyn to test response 

times for Solr search. In Stage 2, a total of 5,000 sample queries were taken from 

Mirlyn query logs to run against the full-text indexes we created. In order to make 

these queries more representative of queries that would be performed on full-text, 

the following operations were performed: 

 

1. Removal of special operators (i.e., wildcards, etc.) 

2. Removal of duplicate queries that are logged when users view the next 

page of  their own search results1 

3. Removal of frequently occurring Mirlyn-specific queries, including 

queries for "proquest" and other databases 

4. Removal frequently occurring author and title queries (and other similar 

queries that are more likely to performed in bibliographic searches, as 

opposed to full-text searches)2 

                                                 
1
 Queries are recorded in Mirlyn logs when users click to a next page of search results as well as 

when queries are entered for the first time. Since we are interested in queries rather than next 
page views, we removed duplicate queries that appeared sequentially in the logs, (which were 
likely a result of a single user viewing the next page of search results). In some cases, these 
“next page” queries did not occur sequentially in the logs (other users were submitting queries at 
the same time), but since we were unable to determine if they were identical queries by a new 
user or “next page” queries from the same user, we did not remove them. This means that there 
were probably more repeated queries in the samples than there would be if we could accurately 
remove next page requests. 
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2. Test Query Response times using 4GB and 8GB of RAM 

 

Results of testing with 4GB of RAM 

 

1,000 queries were run on indexes of 100,000 to 1,000,000 volumes at 100,000 

volume increments. In the first set of tests, using a total of 4GB of RAM, 2GB of 

RAM was allocated to the Java Virtual Machine (JVM) running Solr, and the 

remaining 2GB was allocated to the operating system. In the second set, 

reported on below, 8GB of RAM was used, with 2GB allocated to the JVM and 

6GB to the operating system. A description of Solr architecture and the 

implications of memory allocation are given in the Appendix.  

 

Queries are sometimes repeated by users, and a word or words from one query 

often show up later in another query. Search engines exploit this by caching 

query results in memory and caching intermediate processing results for query 

terms in memory. Since memory access is several orders of magnitude faster 

than retrieving data from disk, this strategy can result in a very significant 

reduction in response times. In our tests, we warmed up the operating system 

and Solr caches by running 4,000 Mirlyn queries (cleaned in the same manner 

described above) before running the 1,000 test queries.3 Further experiments 

with cache warming are reported in Section 3 below.  

 

For the current set of tests, the Solr query results cache was set to cache 512 

results, and the Solr document cache was set to cache 512 documents. These 

are Solr’s default settings. (Tests with different settings are reported on in 

Section 3. See the Appendix for a detailed description of Solr architecture and 

caching.)  

 

Because response times can vary significantly between queries, and it is 

possible for a small number of slow queries to significantly affect the average 

                                                                                                                                                 
2
 In spite of these measures taken to clean the data to produce representative queries, we 

recognize that in general, the queries reflect those that would be made against MARC metadata 
such as author, title and LCSH subject, and not a full-text index of content. Future testing will use 
queries mined from the Hathi trust search demo (http://babel.hathitrust.org/cgi/ls/).  
3
 The 4,000 query number was selected as a reasonable compromise between a number small 

enough to be able to run the test suite in a reasonable amount of time and a number large 
enough to get reasonable results. Whether 4,000 queries are adequate to warm the cache will 
require further investigation. Many researchers investigating caching issues use between 10,000 
and 100,000 queries to warm the caches. (See for example Baeza-Yates et al. (2008:pp.14,19,22 
); Moffat, A., Webber, W., Zobel, J., & Baeza-Yates, R. (2007:p217); and Zhang, J., Long, X., & 
Suel, T. (2008:p 391)). Part of the reason for using so many queries is that in a production 
situation if cache size is limited, over time the most frequent queries/query terms will end up 
staying in the cache. 
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query response time, we used the median and 90th percentile response times to 

evaluate our results. The median response time is the response time such that 

50% of queries are faster and 50% of queries are slower.  The 90th percentile 

response time is the response time such that 90% of the queries are faster and 

10% are slower. As shown in the figures and tables below, 50% of the queries 

returned results in about 2 tenths of a second or less, and 90% of the queries 

returned results in close to 1 second or less. 
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Figure 4. Median Response time (50th percentile) per 100,000 volumes. 

 

 

 

Table I. Median Response time (50th percentile) per 100,000 documents 

 

 

Median Response Time 

Thousands of 

volumes  100 200 300 400 500 600 700 800 1000 

Time (milliseconds) 27 65 85 96 113 140 162 164 211 
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90th Percentile Response Time 
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Figure 5. 90th percentile response time per 100,000 documents. 

 

 

90
th

 Percentile Response Time 

Thousands of 

volumes 100 200 300 400 500 600 700 800 1000 

Time (milliseconds) 117 222 301 354 453 577 675 715 1004 

  

Table II. 90th percentile response time per 100,000 documents  

 

Response times for queries near and above the 90th percentile were as follows: 

 

Query Response Time Percentage 

over 1 second 10.90 

over 5 seconds 2.30 

over 10 seconds 1.60 

over 20 seconds 1.10 

over 30 seconds 1.10 

over 1 minute 0.60 

over 2 minutes 0.40 

over 3 minutes 0.40 

over 4 minutes 0.30 

over 5 minutes 0.20 

 

Table III. Percent of all queries with 1 second or longer response 

 times (for 1,000 queries against the 1,000,000 volume index). 

 

 

As shown, over 97% of queries results were returned within 5 seconds. This is an 

encouraging outcome, but the query times that lie in the upper range, above the 
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90th percentile, are of particular concern to us because of the effect they may 

have on user experience. The range of “acceptable” response times varies from 

one user to the next, but it can be safely assumed that response times over a 

minute will be unacceptable to most users, and that response times over 30 

seconds or even less will be unacceptable to many users.  

 

Table IV shows the queries that took over 30 seconds for the 1 million document 

index. As shown, most of the slow queries are phrase queries containing 

common words. There are two Boolean queries, one is a call number query and 

the other contains somewhat common words. A broader analysis of the entire set 

of 5,000 queries indicates that the slowest queries are phrase searches 

containing common words, and call number searches. Finding ways to deal with 

these “slow” queries in the future will be important to the usability of our full-text 

search. 

 

Rank 

Time 

(ms) Hits Query 

1 532,051 43 "the lives and literature of the beat generation" 

2 494,177 312 "night and the city" 

3 269,006 0 

"A First Course in Statistical Programming with 

R" 

4 201,113 2,466 "The New Economics" 

5 89,502 116 "army of shadows" 

6 81,025 11 "hip a history" 

7 52,838 33 "principles of biochem" 

8 50,961 7,403 "immigration and naturalization service" 

9 37,738 95,914 histoire AND de AND l'art 

10 35,675 706 "7th international congress 1985" 

11 32,193 64 hg AND 6024 AND a3 AND h851 

 

Table IV. Queries taking longer than 30 seconds on 1,000,000 volume index. 

 

Results of testing with 8GB of RAM 

 

For our next set of tests, the memory on our test machine was increased from 

4GB to 8GB. The amount of memory allocated to the Solr JVM was kept at 2GB.  

This resulted in a tripling of the memory available for operating system disk 

caching (from 2GB to 6GB). The response times observed are shown below.  
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Figure 6. Median response times for 4GB and 8GB of RAM 

 

 

 

 

Median Response Time 

Thousands of 

volumes  10 100 200 300 400 500 600 700 800 1000 

Total 

memory 

4GB 

(2GB) 

JVM 2 27 65 85 96 113 140 162 164 211 

 

8GB 

(6GB) 

JVM 2 17 42 53 75 100 127 138 160 200 

Percent 

decrease  0.00 37.04 35.38 37.65 21.88 11.50 9.29 14.81 2.44 5.21 

 

Table V. Median response times for 4GB and 8GB of RAM 
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90th Percentile response time

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Number volumes (1,000s)

R
e

s
p

o
n

s
e

 t
im

e
 (

M
il
li
s

e
c

o
n

d
s

)

4GB 8GB

 
Figure 7. 90th percentile response times for 4GB and 8GB of RAM 

 

 

90
th

 Percentile Response Time 

Thousands of 

volumes  10 100 200 300 400 500 600 700 800 1000 

Total  

memory 

4GB 

(2GB 

JVM) 18 117 222 301 354 453 577 675 715 1004 

 

8GB 

(2GB 

JVM) 19 83 155 191 269 366 518 614 768 901 

Percent 

decrease  -5.56 29.06 30.18 36.54 24.01 19.21 10.23 9.04 -7.41 10.26 

 

Table VI. 90th percentile response times for 4GB and 8GB memory 

 

Note: some anomalies appear in the results for the 10,000 and 800,000 

volume sets where the 90th percentile response time was greater with 8GB 

memory than 4GB. This was likely due to interference from non-search 

related processes that were running on the operating system when the 

tests were done. Additional testing will determine if this was the case.  

 

When compared with results of our first set of tests, differences in response 

times between 4GB of RAM and 8GB can be grouped roughly in ranges of index 

sizes as follows: a 35-37% decrease in median response time for the 100,000-

300,000 volume collections and 10-15% decrease in median response time for 
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the 500,000-700,000 volume collections; a 30-35% decrease in 90th percentile 

response time for the 100,000-300,000 document collections and about a 10% 

decrease in 90th percentile response time for the 600,000-800,000 document 

collections.  For the 10,000 document collection, there is not a significant change. 

This is probably due to the fact that almost the entire index was able to fit in the 

cache (the cache sizes were 2GB and 6GB for the 4GB and 8GB RAM tests, 

respectively). Table VII below shows the size of the indexes for different numbers 

of volumes, and the percent of those indexes that are able to fit in a 2GB and 

6GB cache. 

 

Thousands 

of volumes  

Index size 

(GB) 

% of index 

in 2GB disk 

cache 

% of index 

in 6GB disk 

cache 

10 2.5 80.00 100.00 

50 14 14.3 42.9 

100 29 6.9 20.7 

200 58 3.5 10.3 

300 80 2.50 7.5 

400 100 2.00 6.0 

500 120 1.67 5.0 

600 141 1.42 4.3 

700 165 1.21 3.6 

800 186 1.08 3.2 

900 na na na 

1000 226 0.88 0.7 

 

Table VII. Index size and percent of index that can be held 

 in the operating system disk cache at any one time. 

 

Conclusions 

 

We observed in each set of experiments that the relationship between response 

time and index size as index size increases is linear. This means that for the 

1,000,000 volumes we have tested so far, response time is scaling with the 

number of indexed volumes. Future testing will determine whether this remains 

the case for greater numbers of volumes, and whether the majority of the 

response times are still within reason. The response times for larger indexes may 

have implications for load handling in scenarios where multiple users are 

querying the system at the same time. Developing strategies to deal with these 

longer query times will be an important area of future work. 
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As far as memory is concerned, in general as noted above, the increase in 

memory from 4GB to 8GB (2GB to 6GB for operating system memory) made a 

greater difference at smaller index sizes, where the percent decrease in 

response time was higher. This is what we would expect because a larger 

percentage of the index is able to fit into memory when the index is small, and 

suggests that in order to improve response time at larger index sizes, we will 

need to add more memory. We hope to discover the reason for the lack of 

variation within the groupings, particularly for the median response times in the 

100,000 to 300,000 volume range, in future testing. 

 

3. Caching, Memory, I/O and Scalability 

 

Since retrieving data from directly from memory can be several orders of 

magnitude faster than using I/O to retrieve the data from disk, caching data in 

memory is used extensively in production search engines. It is commonly applied 

to the caching of query results and/or term postings lists (see the Appendix for 

descriptions of each). The caching of query results means that for an exact 

repeat of a query Solr can skip both the processing of postings lists and scoring, 

so it is very fast. Even a small query results cache can be beneficial since query 

repetition is most likely to occur in the same search session. Caching of term 

postings lists still requires Solr to process the postings list and calculate ranking 

scores, so it does not save as much time as caching query results.  However, 

cache hits are more likely since a word in one query can be repeated in a 

different query. 

 

Because the term postings list is cached in the operating system disk cache and 

query results are cached in Solr, which gets its memory from the JVM, we 

believed results of performance testing for each cache separately could have 

implications for how we allocate memory between the operating system and the 

JVM. We therefore performed two series of tests to evaluate the effects of 

caching on performance. The first series measured query response times with 

and without operating system cache warming when the size of the query results 

cache was kept constant. The second series measured response times for two 

different sizes of the Solr query results cache. In both series of tests 2GB of RAM 

was allocated to the JVM. This left 2GB of RAM for the operating system disk 

cache for the tests with 4GB of RAM, and 6GB for the operating system disk 

cache for 8GB of RAM. 

 

 

 



 15 

Comparison of response times with and without caching 

 

The two charts below compare the median and the 90th percentile query 

response times for 1,000 queries on the 10,000, 100,000, 400,000 and 700,000 

volume indexes with and without cache warming.4 

 

Median Response Time 

Thousands of 

volumes  10 100 400 700 

Response Time 

(milliseconds) 1000 queries no cache  9 48 108 166 

 

1000 queries warm 

cache 2 27 96 162 

Percent decrease  77.78 43.75 11.11 2.41 

 

Table VIII. Median query response time  

with and without 4000 query cache warming. 

 

 

90
th

 Percentile Response Time 

Thousands of 

volumes  10 100 400 700 

Response Time 

(milliseconds) 

1000 queries no 

cache  44 185 419 705 

 

1000 queries warm 

cache 18 117 354 675 

Percent decrease  59.09 36.76 15.51 4.26 

 

Table IX. 90th percentile query response time 

 with and without 4000 query cache warming. 

 

Conclusions 

 

Caching has a much greater impact on the smaller indexes as is seen in the 

percentage decrease in response times. This is most likely because at any one 

time, the smaller indexes can get a larger percentage of the index into memory 

(see Table VII). If this is the case, we could conclude that query response times 

for larger index sizes are Input/Output bound rather than CPU bound. In other 

                                                 
4
 For the test without warming, the operating system disk cache was cleared by running 5,000 

queries on a different Solr index, so it was filled with what the OS would see as blocks from 
completely different files.  The Solr caches were cleared by restarting Solr. For the test with 
cache warming, the same procedure was followed to clear the caches and then 4,000 warm up 
queries were run prior to running the 1,000 test queries. 
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words, that response time depends more on the time it takes to retrieve indexed 

information from the hard drive than the time to process information (whether 

retrieved from the hard drive or one of the caches). To improve overall 

performance in future tests, we will be guided by the need to reduce I/O 

demands and/or increase I/O performance.  

 

 

Effect of increasing the query result cache and document cache 

 

The results of the above tests show primarily the effects of operating system disk 

caching. Solr has several additional caches, the most important of which for our 

purposes is the query results cache. In all of the experiments described thus far, 

we used the out-of-the-box settings for this cache, which configure it to store 512 

query results. This is a relatively small number. Additional experiments were 

performed to determine the effects of increasing the query results cache (and 

document cache as well) on query response time. Since memory for Solr caches 

comes out of the memory allocated to the JVM, we also attempted to identify 

from these results any changes we should make to the allocation of memory 

between the operating system and the JVM. 

 

In these experiments, done at the 8GB memory level, the size of the query 

results cache was increased from 512 queries to 100,000 queries, and the 

document cache from 512 to 50,000. The top ten results for each query were 

saved in the query results cache and 4,000 queries were run to warm the cache. 

The results are shown below. 

 

Thousands of 

volumes  100 200 300 600 700 800 

Median 

response time 

Small cache (512 

query results/512 

documents) 17 42 53 127 138 160 

 

Large cache 

(100,000 query 

results / 50,000 

documents) 15 40 45 116 130 141 

Percent 

decrease  11.76 4.76 15.09 8.66 5.80 11.88 

 

Table X. Median response times for 1,000 queries 

 on different size indexes with small and large caches. 
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Thousands of 

volumes  100 200 300 600 700 800 

90
th

 percentile 

response time 

Small cache  

(512 query results / 

512 documents) 83 155 191 518 614 768 

 

Large cache 

(100,000 query 

results / 100,000 

documents) 81 162 183 495 560 615 

Percent 

decrease  2.41 -4.52 4.19 4.44 8.79 19.92 

 

Table XI. 90th percentile response times for 1,000 queries 

 on different size indexes with small and large caches. 

 

The effect of increasing the query results and documents cache sizes varies with 

different size indexes as shown, but overall we observed that using a larger 

cache resulted in a decrease in response time (progressively so for the 90th 

percentile test series). This is what we would expect, but to get a better indication 

of the effects of the larger cache size, we ran additional tests on the 100,000 and 

600,000 indexes using 24,000 and 54,000 warm-up queries on each index, 

respectively. The results, compared with those above, are shown in Tables XII 

and XIII. 

 

100,000 Volumes 

Cache size Cache warm-up 

Median Response 

Time (ms) 

Percent 

decrease 

90
th

 Percentile 

Response 

Time (ms) 

Percent 

decrease 

512 query results/ 

512 documents 4,000 17 83 

11.76 2.41 100,000 query results 

/ 50,000 documents 4,000 15 81 

100,000 query results 

/ 50,000 documents 24,000 12 

20.00 

(29.41 

Total) 65 

19.75 

(21.69 

Total) 

 

Table XII. Median and 90th percentile response times for 1,000 queries 

 on a 100,000 volume set using 4,000 and 24,000 warm up queries. 
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600,000 Volumes 

Cache size Cache warm-up 

Median Response 

Time (ms) 

Percent 

decrease 

90
th

 Percentile 

Response 

Time (ms) 

Percent 

decrease 

512 query results/ 

512 documents 4,000 127 518 

8.66 4.44 100,000 query results 

/ 50,000 documents 4,000 116 495 

100,000 query results 

/ 50,000 documents 54,000 93 

19.83 

(26.77 

Total) 465 

6.06 

(10.2 

Total) 

 

Table XIII. Median and 90th percentile response times for 1,000 queries on a 

600,000 volume set using 4,000 and 54,000 warm up queries. 

  

For both the 100,000 and 600,000 volume indexes we observed that increasing 

the number of cache-warming queries (with the larger cache sizes) significantly 

decreased the response time. Since the larger number of cache-warming queries 

is more representative of the system in realistic production conditions, our 

previous experiments with only 4,000 cache-warming queries (shown in tables X 

and XI above) probably underestimate the effect of increasing the Solr caches on 

response time in a production situation.   

 

Conclusions 

 

Although the decrease in response time due to increasing the Solr caches varied, 

we see that increasing these caches did decrease response time. Limited 

observations of JVM memory allocation during the tests and the absence of any 

"out of memory" errors suggest that the 2 GB memory allocation was adequate to 

allow the 100,000 query result cache and 50,000 document cache settings. 

Further evaluation will be required to determine the optimum cache settings and 

any possible trade-offs between memory allocated to Solr, memory allocated to 

the Solr caches, and memory available for the operating system disk cache. 

 

Our results from sections 2 and 3 of this stage of testing lead us to believe that 

allocation of 2GB of memory to the JVM for Solr caching is adequate for a 

significant amount of query result caching and document caching, but that 

memory allocated to the operating system (which is used for disk caching), is too 

small in comparison to index size at the larger index sizes. From this we can 
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conclude that the slowest part of our search system for larger indexes is I/O (the 

process of retrieving data from disk). 

 

Summary of Stage 2 Results and Conclusions 
 

The primary areas of testing covered in this stage of testing, with their results, 

concerns, and conclusions are as follows: 

 

Tests of query response times at 4GB and 8GB of memory, using the new set of 

test queries 

 

Results: 1) there is a linear relationship between index size and query 

response time as the size of index volumes increases (confirming what we 

observed in Stage 1); 2) increasing memory reduced response time; and 3) 

the reduction in response time was greater for the smaller indexes. 

 

Concerns: there is a small percentage of queries in this distribution that 

take an “unacceptable” amount of time. This is a concern for individual 

users, and may have an effect on the response times of other users who 

are performing searches at the same time, as well. 

 

Conclusions: 1) experimenting with larger indexes will determine if the 

relationship of index size to query response time continues to hold; 2) 

experimenting with more memory will help determine the relative 

contribution of memory to performance; 3) strategies will need to be 

developed to deal with slower queries so they do not pose a usability 

problem for single or multiple users. 

 

Tests with Caching 

 

Testing of the operating system disk cache (by varying the number of 

warm-up queries) 

 

Results: tests showed that response times are significantly lower 

when large amounts of the indexes are able to fit into memory.  

 

Concerns: this leads us to believe that operating system memory 

could be the most significant bottleneck in search performance.  
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Conclusions: To the extent that indexes are too large to fit into 

memory, improving I/O performance will be required to improve 

overall performance 

 

Testing of the Solr caches 

 

Results: testing revealed that increasing the Solr query results and 

document caches can significantly reduce query response time. 

 

Concerns: Although with the cache settings tested, the amount of 

memory used by the caches did not appear to adversely affect the 

use of memory by other Solr processes, this could be a concern 

with either larger cache settings or with a different operating regime 

that requires more memory for Solr processing (processing 

requests from multiple users simultaneously, requesting more 

search results to be returned, sorting results, etc.). 

 

Conclusions: We were not able to determine from these 

experiments the maximum benefit we could receive from increasing 

the size of the Solr caches, or how much memory those caches use. 

There may, therefore, be a benefit to continuing to increase the size 

of the Solr caches, but this will have to be weighed against possible 

adverse effects on the performance of other Solr processes, and 

the performance tradeoffs that may come from not allocating 

additional memory to the operating system disk cache. 
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Appendix – Solr Search Architecture 

 

 
Figure 1. Solr Search Process Architecture 

 

The following discussion presents a simplified overview of how Solr processes 

search requests with an emphasis on how each step is affected by disk I/O and 

CPU processing. We use the term "document" here instead of "volume" to be 

consistent with the Solr documentation and discussions in the information 

retrieval literature. 
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Solr Search Anatomy 

 

As shown in the diagram above, there are three main components to the Solr 

Search Process 1) the Solr search index, which is composed of multiple files 

stored on the hard drive, 2) the operating system disk cache5, which contains a 

cache of recent disk reads in memory, and 3) the Java Virtual Machine (JVM), 

where Solr itself is run. Each of these will be discussed below, followed by a 

description of the Solr Search Process.  

 

Note: Memory allocation refers to the amount of memory that is allocated 

to the operating system and to the Java Virtual Machine. The Linux 

operating system used for our Solr implementation uses any available 

memory that is not in use by other processes for disk caching. This allows 

some portion of the Solr index files to be cached in memory as Solr 

processes queries and requests disk reads. In our tests with 4GB and 

8GB total memory, we allocated 2GB of memory to the JVM running Solr 

and there were no other significant processes running. This means that for 

4GB total memory, 2GB were available for caching of Solr disk reads; for 

8GB total memory, 6GB were available.  

 

1) The Solr Index is composed of a number of files.  For purposes of this 

discussion the following files are relevant: 

 

1. The Dictionary – a list of all terms in the Solr index. The dictionary entry 

for each of the terms has pointers to locations on the hard drive where 

lists of ids for documents containing that term (Term Postings) are stored, 

and to locations where the list of the positions of the term in each 

document (Term Positions) are stored. This is to facilitate fast access to 

the postings or positions lists for a particular term in a query. 

2. Dictionary Index – an index of the Dictionary that provides rapid access to 

entries in the Dictionary. The Dictionary index is kept to a relatively small 

size so it will fit in available memory. For the 1 million document index the 

Dictionary Index is about 75 MB, whereas the Dictionary is about 5 GB. 

3. Term Postings – for each term in the Solr index this file lists the document 

ids of all the documents containing that term.  It also lists the frequency of 

the term in the each document. This is pointed to by the Dictionary.6  

                                                 
5 The operating system disk cache is not a part of Solr, but Solr is designed to take advantage of 
operating system disk cache, so we consider it a component of the Solr search processing 
architecture. 
6 Caching of the term postings lists has a greater likelihood of cache hits than caching of query 

results since terms can be combined in numerous queries. In contrast to query results caching, 
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4. Term Positions – for each term in the Solr index, this file contains a list of 

the positions of that term within each document. Term positions are used 

when phrase queries are submitted to determine if the terms in the phrase 

are adjacent to one another in the volume. Because we are indexing entire 

books (as opposed to web pages or articles), this file can grow extremely 

large. In each of the indexes we produced, the Term Positions file made 

up about 85% of the total index.  

5. Field Data – a file containing stored metadata fields such as author and 

title for each document.  This metadata is used for displaying lists of 

search results.7 

 

2) The operating system disk cache holds as much of the index files in memory 

as possible. If the cache is not large enough to hold all of the index files or is not 

completely warmed up, only a portion of each of these files is stored at any one 

time.  

 

3) The JVM is where Solr processing and Solr caching occurs. For the purposes 

of discussing caching in Solr, we can consider Solr as composed of the following 

parts which exist in memory: 

 

1. Query Results Cache – a cache containing an ordered set of document 

ids of the top “n” search results for particular search queries, “N” is by 

default the number of documents requested in the query. For all of our 

tests we used the default setting, which returned 10 results for each query, 

but this number can be configured.  

2. Document Cache – a cache containing metadata about the documents, 

such as title and author. The number of documents whose metadata is 

cached can also be configured.  

3. Union list of document ids – a list (actually a data structure) generated by 

Solr during search processing. It contains the document ids of all 

documents containing all words in the query. 

4. Ranked Results List – a list (also a data structure) of relevance ordered 

document ids for the top “n” search results of a particular search. This is 

also generated during search processing. 

 

                                                                                                                                                 

when term postings are cached relevance ranking and scoring calculations must still be 

performed on the new term combinations. Query result caching is done by Solr whereas caching 

term postings lists is done by the operating system disk cache
 
 

7 There are actually two files relating to field data. There is a field index file that is used to provide 
fast access to the field data file, which contains the actual data. 
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Solr Search Processing 

 

There are two basic types of searches that Solr can process, Boolean queries 

(i.e. cat AND dog) and Phrase queries (i.e. "to be or not to be").  An overview 

of how these are processed with an emphasis on how the processing involves 

disk reads (I/O) and CPU resources follows.8  A label at the end of each step 

indicates whether the step is dominated by I/O or processing. 

 

For Boolean "AND" queries: 

 

1. For each term in the query, fetch the list of document ids for the 

documents containing that term. This is done by 1) Looking up the term in 

the Dictionary Index 2) Reading some of the dictionary into memory and 

looking up the term in the dictionary to retrieve the location on disk of the 

terms listings in the Term Postings file 3) Reading the relevant portion of 

the Term Postings file into memory and retrieving the lists of document ids 

and the term frequency of the term in each document. [I/O] 

2. Create the union of the lists of document ids. When the ids for documents 

matching the relevant query terms have been retrieved, Solr walks 

through each list and creates a union list which contains the document ids 

of only those documents that contain all the terms.  [Processing] 

3. Relevance rank all the documents in the union list. Solr processes the 

union list to rank the documents according to relevance. [Processing] 

4. Produce the Ranked Results List for the top ranking document ids. As 

mentioned, the number of results that are returned can be configured. 

Since we requested10 results for all of the testing we performed, Solr 

returns a list of the top 10 document ids in relevance order [Processing] 

5. Return metadata for the top ranking documents for use in the display of 

results.  For each document id, Solr retrieves metadata from the Field 

Data File disk. [I/O] 

 

For Phrase queries: 

 

1. For each term in the query, fetch the list of document ids for the 

documents containing that term. As above. [I/O] 

2. Create the union of the lists of document ids. As above [Processing] 

                                                 
8 The process described is accurate at a general level but the implementation details involve 
combining some of the various steps, so this should not be taken as a exact description of how 
Solr implements query processing. 
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3. For each document id, for each term in the query, fetch the list of term 

positions in the document.. 

For a common word such as "the", the term positions list can be extremely 

long.  Zobel and Moffat (2006) found that for one large collection, the 

compressed position lists for a few common words accounted for about 

10% of the total index size.  (p 23) . [I/O] 

4. Based on the list of term positions, determine whether the phrase occurs 

in the document. [Processing]  

5. If the phrase does occur, add the document to the list of documents to be 

scored. [Processing] 

6. Relevance rank all the documents in the final list of documents containing 

the phrase. As above. [Processing] 

7. Produce the Ranked Results List for the top ranking document ids. As 

above [Processing] 

8. Return metadata for the top ranking documents for use in the display of 

results. As above. [I/O] 

 

When Solr processes a query it first checks the query results cache (refer to 

Figure 1). If the results for that query are in the query results cache, all the 

steps except the last step, returning document metadata (steps 1-4 for 

Boolean and steps 1-7 for Phrase queries), can be skipped. This avoids any 

disk reading or processing in those steps, making response times very fast.  

 

Excluding again for a moment the final step of search, when a query does not 

match the query results cache, Solr walks through the steps for a Boolean or 

Phrase query (depending on the type of query), making requests for 

information from disk as needed (steps labeled "I/O" above). Every time it 

does this, the operating system first checks to see if the information is in the 

disk cache (stored in memory). If the information is in the disk cache, the 

operating system sends the information to Solr without having to read the disk.  

If the information is not in the disk cache, the information must be read from 

the disk itself, which requires additional time. Disk caching, therefore, speeds 

up any of the steps listed above that require disk reads (labeled I/O). 

 

In the final step of search, the ids from the Ranked Results List (gathered 

either from disk seeks or from the query results cache) are looked up in the 

Solr document cache. If any of the document ids are not in the document 

cache, Solr must retrieve the metadata for them from disk. When Solr 

requests a disk read from the operating system, as discussed for the other I/O 

operations above, the operating system first checks to see if the information is 
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in the disk cache and if it is, a disk read is avoided. The process of searching 

the document cache before going to disk (or disk cache, as the case may be) 

is the same for both Boolean and Phrase queries.   

 

 

Note on Processing Boolean and Phrase Queries 

 

Our experiments indicate that queries containing common terms, and 

especially phrase queries containing common terms take the longest. 

As the number of documents in an index increases, so does the index size.  

For common terms (i.e. terms such as "the" or "of" that appear in almost 

every document), the size of the Term Postings and Term Positions lists for 

those terms grows approximately linearly with the number of documents.   

This means that any Solr processes that request disk reads for those lists 

need to read in more data. 

 

Boolean queries with words that occur in many documents take longer than 

queries with infrequently occurring words. This is primarily because the Term 

Postings lists (list of documents containing particular terms) for words that 

occur in many documents are much longer and therefore more data must be 

read from disk. Consider for example a query containing the word "the".  For 

a one million document collection, the Postings List for this term might contain 

close to a million document ids. A second reason that these queries take 

longer is that processing the longer lists to produce the union list of document 

ids takes longer.  

 

Phrase queries with common terms take longer than Boolean queries, 

primarily because phrase query evaluation involves reading from the Term 

Positions file and entries in the Term Positions file tend to be much longer 

than the corresponding entry in the Term Postings list.  The Term Positions 

file is generally about 85% of the size of the entire index. A second reason 

that phrase queries take longer than Boolean queries is that the processing of 

the position lists to check to see if words in the phrase are adjacent involves 

significant additional processing. 

 

Boolean or Phrase queries that result in a large number of hits also take 

longer than other queries because the process of relevance ranking a larger 

number of hits requires more processing.  As the number of documents 

indexed increases, the number of potential hits also increases. 
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