
This document is a work in progress and will be updated as successive stages of
testing are completed. The current report covers Stages 1 and 2 of 5.

HathiTrust Solr Benchmarking

Introduction

The ability to discover content in the HathiTrust repository benefits the archive in

a variety of ways. The greater the ability of users to find and use content in the

repository, the greater their appreciation of what might otherwise be seen as a

preservation effort of hypothetical value. In addition, the process of revealing

content in the repository also adds a method for ensuring the integrity of the files;

use of those files can reveal problems that might go undetected in a dark archive.

While we can facilitate basic discovery through bibliographic searches, deeper

discovery through full-text searches across the entire repository provides even

greater benefits.

Research into searching a body of content this large is still in its infancy (the

repository is approaching one billion pages), and few clear strategies for

accomplishing such tasks exist. The major large-scale open source search

engine, Lucene, does not provide benchmarking information for data sets this

large, and Solr, the most widely deployed implementation of Lucene, has only

recently begun gathering benchmarking data. We embark on trying to solve this

problem with only general guidance on strategies.

Research programmers in the University of Michigan’s Digital Library Production

Service have undertaken a process to generate benchmarking data to help

shape our strategies. After a preliminary investigation of options, they chose to

use Solr and they engaged the Solr development community in helping to define

paths. One feature of Solr is its ability to scale searches across very large bodies

of content through its use of distributed searching and “shards.” When an index

becomes too large to fit on a single system, or when a single query takes too

long to execute, an index can be split into multiple shards, and Solr can query

and merge results across those shards. Although the size of our data clearly

points to the need for shards, there are many other variables in designing a

successful approach, one that scales to large amounts of data and provides

meaningful results.

This report summarizes the strategy we are taking and presents the results of

that strategy thus far.

 2

Overview of Strategy

We have attempted to define the variables that have the greatest impact on

large-scale searching. We have also tried to stage our benchmarking process so

that we start with the simplest approach and introduce each new variable only

after collecting benchmarking data on the previous instantiation of the index and

environment. Our stages are as follows:

Stage 1 – Growing the index: As the index gets larger, we expect to learn

about the size of the index relative to the body of content, time to index with a

growing body of content, and degradation of search performance as the

amount of content increases. In order to gain a clear sense of the way that

these phenomena take place, we are conducting tests on indexes in 100,000

volume steps, from 100,000 to 1,000,000 (with additional increments at

10,000 and 50,000).

Stage 2 – Impact of memory: increasing physical memory and changing JVM

configurations will also influence performance. We will increase physical

memory from 4GB to 8GB and test several JVM configuration changes in

combination with a refined test suite of queries on each of these index sizes.

Stage 3 – Using shards: We will introduce shards in the approach, employing

multiple shards with the 8GB memory and optimal JVM configuration. We will

test the suite of searches with one shard on each of two physical servers. We

will then test the suite of searches with one shard on each of two virtual

servers on each physical server (i.e., four shards). Benchmarking data will be

gathered for all of the index steps.

Stage 4 – Load testing: We will introduce load testing for the single shard and

multi-shard approaches, attempting to see what impact a large number of

users will have on performance.

Stage 5 – Faceting results: Full-text searching of a large number of

documents will undoubtedly lead to the retrieval of a large numbers of results,

and thus usability problems. One obvious strategy for improving navigation of

large numbers of results is the use of faceted displays from associated

bibliographic data. We will add relatively full bibliographic records to each of

the documents and repeat the testing process with a faceted display of results

from the bibliographic data.

 3

Stage 1: Growing the Index

Stage 1 investigates the time to index with a growing body of content, and the

degradation of search performance as the amount of content increases. In order

to gain a clear sense of the way that these phenomena take place, we conducted

tests on indexes in 100,000 volume steps, from 100,000 to 1,000,000 (with

additional increments at 10,000 and 50,000).

1. Ratio of size of documents to size of index

We found a linear relationship between the sizes of the text base and the index.

The collection of documents was typically 2.7 times the size of the resulting index

at each increment. The largest body of text, 666.845 GB (one million volumes)

resulted in an index of 235.17 GB, or a text to index ratio of roughly 2.8:1 (the

index was about 35% the size of the text). A sample of results (up to 606,200

volumes) is shown below.

Sizes vs. Number of Volumes

0

100

200

300

400

500

600

1
0
0

3
7
,5
0
0

8
5
,9
0
0

1
3
4
,3
0
0

1
8
2
,7
0
0

2
3
1
,1
0
0

2
7
9
,5
0
0

3
2
7
,9
0
0

3
7
6
,3
0
0

4
2
4
,7
0
0

4
7
3
,1
0
0

5
2
1
,5
0
0

5
6
9
,9
0
0

Number of Volumes

G
ig
a
b
y
te
s

document size

index size

Figure 1. Sizes of the text base and indexes for different numbers of volumes

 4

2. Time to index

The amount of real and machine time needed for indexing varies significantly,

depending on a number of factors. With our current environment, the one million-

document index took a total of 117 hours in real time to produce. An excerpt of

results (up to 402,000 volumes) is given in Figure 2.

Time to Index vs. Number of Volumes

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

12
,0
00

42
,0
00

72
,0
00

10
2,
00
0

13
2,
00
0

16
2,
00
0

19
2,
00
0

22
2,
00
0

25
2,
00
0

28
2,
00
0

31
2,
00
0

34
2,
00
0

37
2,
00
0

40
2,
00
0

Number of Volumes

S
e
c
o
n
d
s

Figure 2. Time to Index vs. Number of Volumes

3. Performance of queries

Results returned using a larger and more representative test suite are reported

on in Stage 2 below, but in this stage we were able to make some preliminary

observations about performance of a single index in a single Solr instance. Using

a small (100 query) sample from the University of Michigan online catalog search

logs, we found that across all of the bodies of text indexed, 90% of the queries

took fewer than two seconds. For the one million-document index, the most

challenging queries exceeded current timeouts or caused memory faults in the

current memory/JVM configuration.

 5

Stage 2: Impact of Memory on Search Performance

The objectives of Stage 2 are to:

1. Refine the query suite used in Stage 1

2. Test query response times with increased physical memory (from 4GB to

8GB)

3. Investigate the impact of caching and memory allocation on performance

and scalability

1. Refine the query suite

Our goal is to measure the effect of the number of volumes indexed and the size

of the resulting index on query response times. Response times, however, can

vary greatly depending on the nature of the query. Some of the factors that affect

response times are:

• How common the word(s) are in the collection

• How many words are in the query

• Whether the query is a Boolean query or a Phrase query

The queries that take the shortest amount of time are single word queries for

words occurring infrequently. The queries that take the longest time are phrase

queries which contain several frequently occurring words. As an example, for our

1,000,000 volume index, the phrase query "the New Economics" took over 2

minutes to run while the one word query "golf" took about a 10th of a second. The

slowest query "the lives and literature of the beat generation" took nearly 10

minutes (a full distribution of query response times for 1,000 queries run on our

1,000,000 volume index is shown in Figure 3. See the Note on Processing

Boolean and Phrase Queries in the Appendix for a more detailed discussion of

the relationship between the type of query and query response time). In order to

receive results that were close as possible to “real” results that we would see in a

production environment, it was important to test with a set of realistic and

representative queries.

 6

Response time 1 million volumes, 1,000 queries

1

10

100

1000

10000

100000

1000000

0 200 400 600 800 1000 1200

Query number (sorted by response time)

Q
u

e
ry

 R
e

s
p

o
n

s
e

 t
im

e

(M
il

li
s

e
c

o
n

d
s

)

Figure 3. Distribution of query response times for 1,000,000 volume index. Note

that response time is shown on a logarithmic scale; the slowest queries took

more than 100,000 times longer than the fastest queries.

The tests reported in Stage 1 used 100 queries from Mirlyn to test response

times for Solr search. In Stage 2, a total of 5,000 sample queries were taken from

Mirlyn query logs to run against the full-text indexes we created. In order to make

these queries more representative of queries that would be performed on full-text,

the following operations were performed:

1. Removal of special operators (i.e., wildcards, etc.)

2. Removal of duplicate queries that are logged when users view the next

page of their own search results1

3. Removal of frequently occurring Mirlyn-specific queries, including

queries for "proquest" and other databases

4. Removal frequently occurring author and title queries (and other similar

queries that are more likely to performed in bibliographic searches, as

opposed to full-text searches)2

1
 Queries are recorded in Mirlyn logs when users click to a next page of search results as well as

when queries are entered for the first time. Since we are interested in queries rather than next
page views, we removed duplicate queries that appeared sequentially in the logs, (which were
likely a result of a single user viewing the next page of search results). In some cases, these
“next page” queries did not occur sequentially in the logs (other users were submitting queries at
the same time), but since we were unable to determine if they were identical queries by a new
user or “next page” queries from the same user, we did not remove them. This means that there
were probably more repeated queries in the samples than there would be if we could accurately
remove next page requests.

 7

2. Test Query Response times using 4GB and 8GB of RAM

Results of testing with 4GB of RAM

1,000 queries were run on indexes of 100,000 to 1,000,000 volumes at 100,000

volume increments. In the first set of tests, using a total of 4GB of RAM, 2GB of

RAM was allocated to the Java Virtual Machine (JVM) running Solr, and the

remaining 2GB was allocated to the operating system. In the second set,

reported on below, 8GB of RAM was used, with 2GB allocated to the JVM and

6GB to the operating system. A description of Solr architecture and the

implications of memory allocation are given in the Appendix.

Queries are sometimes repeated by users, and a word or words from one query

often show up later in another query. Search engines exploit this by caching

query results in memory and caching intermediate processing results for query

terms in memory. Since memory access is several orders of magnitude faster

than retrieving data from disk, this strategy can result in a very significant

reduction in response times. In our tests, we warmed up the operating system

and Solr caches by running 4,000 Mirlyn queries (cleaned in the same manner

described above) before running the 1,000 test queries.3 Further experiments

with cache warming are reported in Section 3 below.

For the current set of tests, the Solr query results cache was set to cache 512

results, and the Solr document cache was set to cache 512 documents. These

are Solr’s default settings. (Tests with different settings are reported on in

Section 3. See the Appendix for a detailed description of Solr architecture and

caching.)

Because response times can vary significantly between queries, and it is

possible for a small number of slow queries to significantly affect the average

2
 In spite of these measures taken to clean the data to produce representative queries, we

recognize that in general, the queries reflect those that would be made against MARC metadata
such as author, title and LCSH subject, and not a full-text index of content. Future testing will use
queries mined from the Hathi trust search demo (http://babel.hathitrust.org/cgi/ls/).
3
 The 4,000 query number was selected as a reasonable compromise between a number small

enough to be able to run the test suite in a reasonable amount of time and a number large
enough to get reasonable results. Whether 4,000 queries are adequate to warm the cache will
require further investigation. Many researchers investigating caching issues use between 10,000
and 100,000 queries to warm the caches. (See for example Baeza-Yates et al. (2008:pp.14,19,22
); Moffat, A., Webber, W., Zobel, J., & Baeza-Yates, R. (2007:p217); and Zhang, J., Long, X., &
Suel, T. (2008:p 391)). Part of the reason for using so many queries is that in a production
situation if cache size is limited, over time the most frequent queries/query terms will end up
staying in the cache.

 8

query response time, we used the median and 90th percentile response times to

evaluate our results. The median response time is the response time such that

50% of queries are faster and 50% of queries are slower. The 90th percentile

response time is the response time such that 90% of the queries are faster and

10% are slower. As shown in the figures and tables below, 50% of the queries

returned results in about 2 tenths of a second or less, and 90% of the queries

returned results in close to 1 second or less.

Median Response Time

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000 1100

Number Volumes (1,000s)

Q
u

e
ry

 r
e

s
p

o
n

s
e

 t
im

e

(m
il

li
s

e
c

o
n

d
s

)

Figure 4. Median Response time (50th percentile) per 100,000 volumes.

Table I. Median Response time (50th percentile) per 100,000 documents

Median Response Time

Thousands of

volumes 100 200 300 400 500 600 700 800 1000

Time (milliseconds) 27 65 85 96 113 140 162 164 211

 9

90th Percentile Response Time

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700 800 900 1000 1100

Number Volumes (1000's)

Q
u

e
ry

 r
e
s
p

o
n

s
e
 t

im
e

(m
il

li
s
e
c
o

n
d

s
)

Figure 5. 90th percentile response time per 100,000 documents.

90
th

 Percentile Response Time

Thousands of

volumes 100 200 300 400 500 600 700 800 1000

Time (milliseconds) 117 222 301 354 453 577 675 715 1004

Table II. 90th percentile response time per 100,000 documents

Response times for queries near and above the 90th percentile were as follows:

Query Response Time Percentage

over 1 second 10.90

over 5 seconds 2.30

over 10 seconds 1.60

over 20 seconds 1.10

over 30 seconds 1.10

over 1 minute 0.60

over 2 minutes 0.40

over 3 minutes 0.40

over 4 minutes 0.30

over 5 minutes 0.20

Table III. Percent of all queries with 1 second or longer response

 times (for 1,000 queries against the 1,000,000 volume index).

As shown, over 97% of queries results were returned within 5 seconds. This is an

encouraging outcome, but the query times that lie in the upper range, above the

 10

90th percentile, are of particular concern to us because of the effect they may

have on user experience. The range of “acceptable” response times varies from

one user to the next, but it can be safely assumed that response times over a

minute will be unacceptable to most users, and that response times over 30

seconds or even less will be unacceptable to many users.

Table IV shows the queries that took over 30 seconds for the 1 million document

index. As shown, most of the slow queries are phrase queries containing

common words. There are two Boolean queries, one is a call number query and

the other contains somewhat common words. A broader analysis of the entire set

of 5,000 queries indicates that the slowest queries are phrase searches

containing common words, and call number searches. Finding ways to deal with

these “slow” queries in the future will be important to the usability of our full-text

search.

Rank

Time

(ms) Hits Query

1 532,051 43 "the lives and literature of the beat generation"

2 494,177 312 "night and the city"

3 269,006 0

"A First Course in Statistical Programming with

R"

4 201,113 2,466 "The New Economics"

5 89,502 116 "army of shadows"

6 81,025 11 "hip a history"

7 52,838 33 "principles of biochem"

8 50,961 7,403 "immigration and naturalization service"

9 37,738 95,914 histoire AND de AND l'art

10 35,675 706 "7th international congress 1985"

11 32,193 64 hg AND 6024 AND a3 AND h851

Table IV. Queries taking longer than 30 seconds on 1,000,000 volume index.

Results of testing with 8GB of RAM

For our next set of tests, the memory on our test machine was increased from

4GB to 8GB. The amount of memory allocated to the Solr JVM was kept at 2GB.

This resulted in a tripling of the memory available for operating system disk

caching (from 2GB to 6GB). The response times observed are shown below.

 11

Median response time

0

50

100

150

200

250

0 200 400 600 800 1000 1200

Number of volumes (1,000s)

R
e

s
p

o
n

s
e

 t
im

e
 (

m
il
li
s

e
c

o
n

d
s

)

4GB 8GB

Figure 6. Median response times for 4GB and 8GB of RAM

Median Response Time

Thousands of

volumes 10 100 200 300 400 500 600 700 800 1000

Total

memory

4GB

(2GB)

JVM 2 27 65 85 96 113 140 162 164 211

8GB

(6GB)

JVM 2 17 42 53 75 100 127 138 160 200

Percent

decrease 0.00 37.04 35.38 37.65 21.88 11.50 9.29 14.81 2.44 5.21

Table V. Median response times for 4GB and 8GB of RAM

 12

90th Percentile response time

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Number volumes (1,000s)

R
e

s
p

o
n

s
e

 t
im

e
 (

M
il
li
s

e
c

o
n

d
s

)

4GB 8GB

Figure 7. 90th percentile response times for 4GB and 8GB of RAM

90
th

 Percentile Response Time

Thousands of

volumes 10 100 200 300 400 500 600 700 800 1000

Total

memory

4GB

(2GB

JVM) 18 117 222 301 354 453 577 675 715 1004

8GB

(2GB

JVM) 19 83 155 191 269 366 518 614 768 901

Percent

decrease -5.56 29.06 30.18 36.54 24.01 19.21 10.23 9.04 -7.41 10.26

Table VI. 90th percentile response times for 4GB and 8GB memory

Note: some anomalies appear in the results for the 10,000 and 800,000

volume sets where the 90th percentile response time was greater with 8GB

memory than 4GB. This was likely due to interference from non-search

related processes that were running on the operating system when the

tests were done. Additional testing will determine if this was the case.

When compared with results of our first set of tests, differences in response

times between 4GB of RAM and 8GB can be grouped roughly in ranges of index

sizes as follows: a 35-37% decrease in median response time for the 100,000-

300,000 volume collections and 10-15% decrease in median response time for

 13

the 500,000-700,000 volume collections; a 30-35% decrease in 90th percentile

response time for the 100,000-300,000 document collections and about a 10%

decrease in 90th percentile response time for the 600,000-800,000 document

collections. For the 10,000 document collection, there is not a significant change.

This is probably due to the fact that almost the entire index was able to fit in the

cache (the cache sizes were 2GB and 6GB for the 4GB and 8GB RAM tests,

respectively). Table VII below shows the size of the indexes for different numbers

of volumes, and the percent of those indexes that are able to fit in a 2GB and

6GB cache.

Thousands

of volumes

Index size

(GB)

% of index

in 2GB disk

cache

% of index

in 6GB disk

cache

10 2.5 80.00 100.00

50 14 14.3 42.9

100 29 6.9 20.7

200 58 3.5 10.3

300 80 2.50 7.5

400 100 2.00 6.0

500 120 1.67 5.0

600 141 1.42 4.3

700 165 1.21 3.6

800 186 1.08 3.2

900 na na na

1000 226 0.88 0.7

Table VII. Index size and percent of index that can be held

 in the operating system disk cache at any one time.

Conclusions

We observed in each set of experiments that the relationship between response

time and index size as index size increases is linear. This means that for the

1,000,000 volumes we have tested so far, response time is scaling with the

number of indexed volumes. Future testing will determine whether this remains

the case for greater numbers of volumes, and whether the majority of the

response times are still within reason. The response times for larger indexes may

have implications for load handling in scenarios where multiple users are

querying the system at the same time. Developing strategies to deal with these

longer query times will be an important area of future work.

 14

As far as memory is concerned, in general as noted above, the increase in

memory from 4GB to 8GB (2GB to 6GB for operating system memory) made a

greater difference at smaller index sizes, where the percent decrease in

response time was higher. This is what we would expect because a larger

percentage of the index is able to fit into memory when the index is small, and

suggests that in order to improve response time at larger index sizes, we will

need to add more memory. We hope to discover the reason for the lack of

variation within the groupings, particularly for the median response times in the

100,000 to 300,000 volume range, in future testing.

3. Caching, Memory, I/O and Scalability

Since retrieving data from directly from memory can be several orders of

magnitude faster than using I/O to retrieve the data from disk, caching data in

memory is used extensively in production search engines. It is commonly applied

to the caching of query results and/or term postings lists (see the Appendix for

descriptions of each). The caching of query results means that for an exact

repeat of a query Solr can skip both the processing of postings lists and scoring,

so it is very fast. Even a small query results cache can be beneficial since query

repetition is most likely to occur in the same search session. Caching of term

postings lists still requires Solr to process the postings list and calculate ranking

scores, so it does not save as much time as caching query results. However,

cache hits are more likely since a word in one query can be repeated in a

different query.

Because the term postings list is cached in the operating system disk cache and

query results are cached in Solr, which gets its memory from the JVM, we

believed results of performance testing for each cache separately could have

implications for how we allocate memory between the operating system and the

JVM. We therefore performed two series of tests to evaluate the effects of

caching on performance. The first series measured query response times with

and without operating system cache warming when the size of the query results

cache was kept constant. The second series measured response times for two

different sizes of the Solr query results cache. In both series of tests 2GB of RAM

was allocated to the JVM. This left 2GB of RAM for the operating system disk

cache for the tests with 4GB of RAM, and 6GB for the operating system disk

cache for 8GB of RAM.

 15

Comparison of response times with and without caching

The two charts below compare the median and the 90th percentile query

response times for 1,000 queries on the 10,000, 100,000, 400,000 and 700,000

volume indexes with and without cache warming.4

Median Response Time

Thousands of

volumes 10 100 400 700

Response Time

(milliseconds) 1000 queries no cache 9 48 108 166

1000 queries warm

cache 2 27 96 162

Percent decrease 77.78 43.75 11.11 2.41

Table VIII. Median query response time

with and without 4000 query cache warming.

90
th

 Percentile Response Time

Thousands of

volumes 10 100 400 700

Response Time

(milliseconds)

1000 queries no

cache 44 185 419 705

1000 queries warm

cache 18 117 354 675

Percent decrease 59.09 36.76 15.51 4.26

Table IX. 90th percentile query response time

 with and without 4000 query cache warming.

Conclusions

Caching has a much greater impact on the smaller indexes as is seen in the

percentage decrease in response times. This is most likely because at any one

time, the smaller indexes can get a larger percentage of the index into memory

(see Table VII). If this is the case, we could conclude that query response times

for larger index sizes are Input/Output bound rather than CPU bound. In other

4
 For the test without warming, the operating system disk cache was cleared by running 5,000

queries on a different Solr index, so it was filled with what the OS would see as blocks from
completely different files. The Solr caches were cleared by restarting Solr. For the test with
cache warming, the same procedure was followed to clear the caches and then 4,000 warm up
queries were run prior to running the 1,000 test queries.

 16

words, that response time depends more on the time it takes to retrieve indexed

information from the hard drive than the time to process information (whether

retrieved from the hard drive or one of the caches). To improve overall

performance in future tests, we will be guided by the need to reduce I/O

demands and/or increase I/O performance.

Effect of increasing the query result cache and document cache

The results of the above tests show primarily the effects of operating system disk

caching. Solr has several additional caches, the most important of which for our

purposes is the query results cache. In all of the experiments described thus far,

we used the out-of-the-box settings for this cache, which configure it to store 512

query results. This is a relatively small number. Additional experiments were

performed to determine the effects of increasing the query results cache (and

document cache as well) on query response time. Since memory for Solr caches

comes out of the memory allocated to the JVM, we also attempted to identify

from these results any changes we should make to the allocation of memory

between the operating system and the JVM.

In these experiments, done at the 8GB memory level, the size of the query

results cache was increased from 512 queries to 100,000 queries, and the

document cache from 512 to 50,000. The top ten results for each query were

saved in the query results cache and 4,000 queries were run to warm the cache.

The results are shown below.

Thousands of

volumes 100 200 300 600 700 800

Median

response time

Small cache (512

query results/512

documents) 17 42 53 127 138 160

Large cache

(100,000 query

results / 50,000

documents) 15 40 45 116 130 141

Percent

decrease 11.76 4.76 15.09 8.66 5.80 11.88

Table X. Median response times for 1,000 queries

 on different size indexes with small and large caches.

 17

Thousands of

volumes 100 200 300 600 700 800

90
th

 percentile

response time

Small cache

(512 query results /

512 documents) 83 155 191 518 614 768

Large cache

(100,000 query

results / 100,000

documents) 81 162 183 495 560 615

Percent

decrease 2.41 -4.52 4.19 4.44 8.79 19.92

Table XI. 90th percentile response times for 1,000 queries

 on different size indexes with small and large caches.

The effect of increasing the query results and documents cache sizes varies with

different size indexes as shown, but overall we observed that using a larger

cache resulted in a decrease in response time (progressively so for the 90th

percentile test series). This is what we would expect, but to get a better indication

of the effects of the larger cache size, we ran additional tests on the 100,000 and

600,000 indexes using 24,000 and 54,000 warm-up queries on each index,

respectively. The results, compared with those above, are shown in Tables XII

and XIII.

100,000 Volumes

Cache size Cache warm-up

Median Response

Time (ms)

Percent

decrease

90
th

 Percentile

Response

Time (ms)

Percent

decrease

512 query results/

512 documents 4,000 17 83

11.76 2.41 100,000 query results

/ 50,000 documents 4,000 15 81

100,000 query results

/ 50,000 documents 24,000 12

20.00

(29.41

Total) 65

19.75

(21.69

Total)

Table XII. Median and 90th percentile response times for 1,000 queries

 on a 100,000 volume set using 4,000 and 24,000 warm up queries.

 18

600,000 Volumes

Cache size Cache warm-up

Median Response

Time (ms)

Percent

decrease

90
th

 Percentile

Response

Time (ms)

Percent

decrease

512 query results/

512 documents 4,000 127 518

8.66 4.44 100,000 query results

/ 50,000 documents 4,000 116 495

100,000 query results

/ 50,000 documents 54,000 93

19.83

(26.77

Total) 465

6.06

(10.2

Total)

Table XIII. Median and 90th percentile response times for 1,000 queries on a

600,000 volume set using 4,000 and 54,000 warm up queries.

For both the 100,000 and 600,000 volume indexes we observed that increasing

the number of cache-warming queries (with the larger cache sizes) significantly

decreased the response time. Since the larger number of cache-warming queries

is more representative of the system in realistic production conditions, our

previous experiments with only 4,000 cache-warming queries (shown in tables X

and XI above) probably underestimate the effect of increasing the Solr caches on

response time in a production situation.

Conclusions

Although the decrease in response time due to increasing the Solr caches varied,

we see that increasing these caches did decrease response time. Limited

observations of JVM memory allocation during the tests and the absence of any

"out of memory" errors suggest that the 2 GB memory allocation was adequate to

allow the 100,000 query result cache and 50,000 document cache settings.

Further evaluation will be required to determine the optimum cache settings and

any possible trade-offs between memory allocated to Solr, memory allocated to

the Solr caches, and memory available for the operating system disk cache.

Our results from sections 2 and 3 of this stage of testing lead us to believe that

allocation of 2GB of memory to the JVM for Solr caching is adequate for a

significant amount of query result caching and document caching, but that

memory allocated to the operating system (which is used for disk caching), is too

small in comparison to index size at the larger index sizes. From this we can

 19

conclude that the slowest part of our search system for larger indexes is I/O (the

process of retrieving data from disk).

Summary of Stage 2 Results and Conclusions

The primary areas of testing covered in this stage of testing, with their results,

concerns, and conclusions are as follows:

Tests of query response times at 4GB and 8GB of memory, using the new set of

test queries

Results: 1) there is a linear relationship between index size and query

response time as the size of index volumes increases (confirming what we

observed in Stage 1); 2) increasing memory reduced response time; and 3)

the reduction in response time was greater for the smaller indexes.

Concerns: there is a small percentage of queries in this distribution that

take an “unacceptable” amount of time. This is a concern for individual

users, and may have an effect on the response times of other users who

are performing searches at the same time, as well.

Conclusions: 1) experimenting with larger indexes will determine if the

relationship of index size to query response time continues to hold; 2)

experimenting with more memory will help determine the relative

contribution of memory to performance; 3) strategies will need to be

developed to deal with slower queries so they do not pose a usability

problem for single or multiple users.

Tests with Caching

Testing of the operating system disk cache (by varying the number of

warm-up queries)

Results: tests showed that response times are significantly lower

when large amounts of the indexes are able to fit into memory.

Concerns: this leads us to believe that operating system memory

could be the most significant bottleneck in search performance.

 20

Conclusions: To the extent that indexes are too large to fit into

memory, improving I/O performance will be required to improve

overall performance

Testing of the Solr caches

Results: testing revealed that increasing the Solr query results and

document caches can significantly reduce query response time.

Concerns: Although with the cache settings tested, the amount of

memory used by the caches did not appear to adversely affect the

use of memory by other Solr processes, this could be a concern

with either larger cache settings or with a different operating regime

that requires more memory for Solr processing (processing

requests from multiple users simultaneously, requesting more

search results to be returned, sorting results, etc.).

Conclusions: We were not able to determine from these

experiments the maximum benefit we could receive from increasing

the size of the Solr caches, or how much memory those caches use.

There may, therefore, be a benefit to continuing to increase the size

of the Solr caches, but this will have to be weighed against possible

adverse effects on the performance of other Solr processes, and

the performance tradeoffs that may come from not allocating

additional memory to the operating system disk cache.

 21

Appendix – Solr Search Architecture

Figure 1. Solr Search Process Architecture

The following discussion presents a simplified overview of how Solr processes

search requests with an emphasis on how each step is affected by disk I/O and

CPU processing. We use the term "document" here instead of "volume" to be

consistent with the Solr documentation and discussions in the information

retrieval literature.

 22

Solr Search Anatomy

As shown in the diagram above, there are three main components to the Solr

Search Process 1) the Solr search index, which is composed of multiple files

stored on the hard drive, 2) the operating system disk cache5, which contains a

cache of recent disk reads in memory, and 3) the Java Virtual Machine (JVM),

where Solr itself is run. Each of these will be discussed below, followed by a

description of the Solr Search Process.

Note: Memory allocation refers to the amount of memory that is allocated

to the operating system and to the Java Virtual Machine. The Linux

operating system used for our Solr implementation uses any available

memory that is not in use by other processes for disk caching. This allows

some portion of the Solr index files to be cached in memory as Solr

processes queries and requests disk reads. In our tests with 4GB and

8GB total memory, we allocated 2GB of memory to the JVM running Solr

and there were no other significant processes running. This means that for

4GB total memory, 2GB were available for caching of Solr disk reads; for

8GB total memory, 6GB were available.

1) The Solr Index is composed of a number of files. For purposes of this

discussion the following files are relevant:

1. The Dictionary – a list of all terms in the Solr index. The dictionary entry

for each of the terms has pointers to locations on the hard drive where

lists of ids for documents containing that term (Term Postings) are stored,

and to locations where the list of the positions of the term in each

document (Term Positions) are stored. This is to facilitate fast access to

the postings or positions lists for a particular term in a query.

2. Dictionary Index – an index of the Dictionary that provides rapid access to

entries in the Dictionary. The Dictionary index is kept to a relatively small

size so it will fit in available memory. For the 1 million document index the

Dictionary Index is about 75 MB, whereas the Dictionary is about 5 GB.

3. Term Postings – for each term in the Solr index this file lists the document

ids of all the documents containing that term. It also lists the frequency of

the term in the each document. This is pointed to by the Dictionary.6

5 The operating system disk cache is not a part of Solr, but Solr is designed to take advantage of
operating system disk cache, so we consider it a component of the Solr search processing
architecture.
6 Caching of the term postings lists has a greater likelihood of cache hits than caching of query

results since terms can be combined in numerous queries. In contrast to query results caching,

 23

4. Term Positions – for each term in the Solr index, this file contains a list of

the positions of that term within each document. Term positions are used

when phrase queries are submitted to determine if the terms in the phrase

are adjacent to one another in the volume. Because we are indexing entire

books (as opposed to web pages or articles), this file can grow extremely

large. In each of the indexes we produced, the Term Positions file made

up about 85% of the total index.

5. Field Data – a file containing stored metadata fields such as author and

title for each document. This metadata is used for displaying lists of

search results.7

2) The operating system disk cache holds as much of the index files in memory

as possible. If the cache is not large enough to hold all of the index files or is not

completely warmed up, only a portion of each of these files is stored at any one

time.

3) The JVM is where Solr processing and Solr caching occurs. For the purposes

of discussing caching in Solr, we can consider Solr as composed of the following

parts which exist in memory:

1. Query Results Cache – a cache containing an ordered set of document

ids of the top “n” search results for particular search queries, “N” is by

default the number of documents requested in the query. For all of our

tests we used the default setting, which returned 10 results for each query,

but this number can be configured.

2. Document Cache – a cache containing metadata about the documents,

such as title and author. The number of documents whose metadata is

cached can also be configured.

3. Union list of document ids – a list (actually a data structure) generated by

Solr during search processing. It contains the document ids of all

documents containing all words in the query.

4. Ranked Results List – a list (also a data structure) of relevance ordered

document ids for the top “n” search results of a particular search. This is

also generated during search processing.

when term postings are cached relevance ranking and scoring calculations must still be

performed on the new term combinations. Query result caching is done by Solr whereas caching

term postings lists is done by the operating system disk cache

7 There are actually two files relating to field data. There is a field index file that is used to provide
fast access to the field data file, which contains the actual data.

 24

Solr Search Processing

There are two basic types of searches that Solr can process, Boolean queries

(i.e. cat AND dog) and Phrase queries (i.e. "to be or not to be"). An overview

of how these are processed with an emphasis on how the processing involves

disk reads (I/O) and CPU resources follows.8 A label at the end of each step

indicates whether the step is dominated by I/O or processing.

For Boolean "AND" queries:

1. For each term in the query, fetch the list of document ids for the

documents containing that term. This is done by 1) Looking up the term in

the Dictionary Index 2) Reading some of the dictionary into memory and

looking up the term in the dictionary to retrieve the location on disk of the

terms listings in the Term Postings file 3) Reading the relevant portion of

the Term Postings file into memory and retrieving the lists of document ids

and the term frequency of the term in each document. [I/O]

2. Create the union of the lists of document ids. When the ids for documents

matching the relevant query terms have been retrieved, Solr walks

through each list and creates a union list which contains the document ids

of only those documents that contain all the terms. [Processing]

3. Relevance rank all the documents in the union list. Solr processes the

union list to rank the documents according to relevance. [Processing]

4. Produce the Ranked Results List for the top ranking document ids. As

mentioned, the number of results that are returned can be configured.

Since we requested10 results for all of the testing we performed, Solr

returns a list of the top 10 document ids in relevance order [Processing]

5. Return metadata for the top ranking documents for use in the display of

results. For each document id, Solr retrieves metadata from the Field

Data File disk. [I/O]

For Phrase queries:

1. For each term in the query, fetch the list of document ids for the

documents containing that term. As above. [I/O]

2. Create the union of the lists of document ids. As above [Processing]

8 The process described is accurate at a general level but the implementation details involve
combining some of the various steps, so this should not be taken as a exact description of how
Solr implements query processing.

 25

3. For each document id, for each term in the query, fetch the list of term

positions in the document..

For a common word such as "the", the term positions list can be extremely

long. Zobel and Moffat (2006) found that for one large collection, the

compressed position lists for a few common words accounted for about

10% of the total index size. (p 23) . [I/O]

4. Based on the list of term positions, determine whether the phrase occurs

in the document. [Processing]

5. If the phrase does occur, add the document to the list of documents to be

scored. [Processing]

6. Relevance rank all the documents in the final list of documents containing

the phrase. As above. [Processing]

7. Produce the Ranked Results List for the top ranking document ids. As

above [Processing]

8. Return metadata for the top ranking documents for use in the display of

results. As above. [I/O]

When Solr processes a query it first checks the query results cache (refer to

Figure 1). If the results for that query are in the query results cache, all the

steps except the last step, returning document metadata (steps 1-4 for

Boolean and steps 1-7 for Phrase queries), can be skipped. This avoids any

disk reading or processing in those steps, making response times very fast.

Excluding again for a moment the final step of search, when a query does not

match the query results cache, Solr walks through the steps for a Boolean or

Phrase query (depending on the type of query), making requests for

information from disk as needed (steps labeled "I/O" above). Every time it

does this, the operating system first checks to see if the information is in the

disk cache (stored in memory). If the information is in the disk cache, the

operating system sends the information to Solr without having to read the disk.

If the information is not in the disk cache, the information must be read from

the disk itself, which requires additional time. Disk caching, therefore, speeds

up any of the steps listed above that require disk reads (labeled I/O).

In the final step of search, the ids from the Ranked Results List (gathered

either from disk seeks or from the query results cache) are looked up in the

Solr document cache. If any of the document ids are not in the document

cache, Solr must retrieve the metadata for them from disk. When Solr

requests a disk read from the operating system, as discussed for the other I/O

operations above, the operating system first checks to see if the information is

 26

in the disk cache and if it is, a disk read is avoided. The process of searching

the document cache before going to disk (or disk cache, as the case may be)

is the same for both Boolean and Phrase queries.

Note on Processing Boolean and Phrase Queries

Our experiments indicate that queries containing common terms, and

especially phrase queries containing common terms take the longest.

As the number of documents in an index increases, so does the index size.

For common terms (i.e. terms such as "the" or "of" that appear in almost

every document), the size of the Term Postings and Term Positions lists for

those terms grows approximately linearly with the number of documents.

This means that any Solr processes that request disk reads for those lists

need to read in more data.

Boolean queries with words that occur in many documents take longer than

queries with infrequently occurring words. This is primarily because the Term

Postings lists (list of documents containing particular terms) for words that

occur in many documents are much longer and therefore more data must be

read from disk. Consider for example a query containing the word "the". For

a one million document collection, the Postings List for this term might contain

close to a million document ids. A second reason that these queries take

longer is that processing the longer lists to produce the union list of document

ids takes longer.

Phrase queries with common terms take longer than Boolean queries,

primarily because phrase query evaluation involves reading from the Term

Positions file and entries in the Term Positions file tend to be much longer

than the corresponding entry in the Term Postings list. The Term Positions

file is generally about 85% of the size of the entire index. A second reason

that phrase queries take longer than Boolean queries is that the processing of

the position lists to check to see if words in the phrase are adjacent involves

significant additional processing.

Boolean or Phrase queries that result in a large number of hits also take

longer than other queries because the process of relevance ranking a larger

number of hits requires more processing. As the number of documents

indexed increases, the number of potential hits also increases.

 27

References

Baeza-Yates, R., Gionis, A., Junqueira, F. P., Murdock, V., Plachouras,
V., & Silvestri, F. (2008). Design trade-offs for search engine caching.
ACM Trans. Web, 2(4), 1-28. doi: 10.1145/1409220.1409223.

Moffat, A., Webber, W., Zobel, J., & Baeza-Yates, R. (2007). A pipelined
architecture for distributed text query evaluation. Information
Retrieval, 10(3), 205-231. doi: 10.1007/s10791-006-9014-4.

Zhang, J., Long, X., & Suel, T. (2008). Performance of compressed
inverted list caching in search engines. In Proceeding of the 17th
international conference on World Wide Web (pp. 387-396). Beijing,
China: ACM. doi: 10.1145/1367497.1367550.

